杨辉,刘如谦,章美玲及许争锋等团队发表5篇Nature等文章,发现线粒体碱基编辑器的治疗疾病潜力及脱靶情况
iNature
全蛋白胞嘧啶碱基编辑器 DdCBE 使用 TALE 蛋白和双链 DNA 特异性胞苷脱氨酶 (DddA) 介导靶向 C•G 到 T•A 编辑。
2022年4月4日,博德研究所刘如谦团队在Nature Biotechnology 在线发表题为“CRISPR-free base editors with enhanced activity and expanded targeting scope in mitochondrial and nuclear DNA”的研究论文,该研究为了提高编辑效率并克服 DddA 严格的 TC 序列约束,使用噬菌体辅助的非连续和持续进化来进化具有改进活性和扩大靶向范围的 DddA 变体。
与经典的 DdCBE 相比,具有进化 DddA6 的碱基编辑器将 TC 的线粒体 DNA (mtDNA) 编辑效率平均提高了 3.3 倍。含有进化的 DddA11 的 DdCBE 为线粒体和核碱基编辑提供了更广泛的 HC(H = A、C 或 T)序列兼容性,将 AC 和 CC 靶标的平均编辑效率从标准 DdCBE 的不到 10% 提高到 15-30% 。该研究使用这些进化的 DdCBE 在非 TC 靶位点有效地在人类细胞中安装与疾病相关的 mtDNA 突变。DddA6 和 DddA11 大大提高了全蛋白碱基编辑的有效性和适用性。
另外,2022年3月18日,中国农业科学院深圳农业基因组研究所左二伟、中国科学院脑科学与智能技术卓越创新中心杨辉、上海脑科学与类脑研究中心/临港国家实验室胥春龙、上海交通大学章美玲共同通讯在 Cell Discovery (IF=11)在线发表题为“Mitochondrial base editor DdCBE cause substantial DNA off-target editing in nuclear genome of embryos” 的研究论文,该研究使用 GOTI方法(点击阅读),以评估 DdCBE 对 mtDNA 和核 DNA 修饰的脱靶效应。该研究首次展示了 DdCBE 在整个核基因组中导致数千个脱靶 SNV,这些 SNV 富含 C-to-T/G-to-A 转换,这是低保真碱基编辑器 BE3 产生的 SNV 数的两倍。总之,该研究发现DdCBE 对核基因组具有广泛的脱靶效应,强烈需要优化 DdCBE 以在 mtDNA 上进行特定的碱基编辑,特别是在用于治疗线粒体疾病之前(点击阅读)。2022年2月1日,上海交通大学章美玲,李文及中国科学院脑科学与智能技术卓越创新中心杨辉共同通讯在 Cell Discovery 在线发表题为“Human cleaving embryos enable efficient mitochondrial base-editing with DdCBE” 的研究论文,该研究表明,DdCBE 是一种有效的碱基编辑器,可在人类胚胎 mtDNA 中诱导点突变,并且在 8 细胞胚胎中的效率要高得多。 鉴于旁观者和脱靶编辑特征,DdCBE 仍有待进一步优化用于未来的基础和治疗研究。2022年2月1日,南京医科大学许争锋、沈斌及凌秀凤共同通讯在 Cell Discovery 在线发表题为“DdCBE-mediated mitochondrial base editing in human 3PN embryos” 的研究论文,该研究首次证明了在人类 3PN 胚胎中进行 DdCBE 介导的线粒体碱基编辑的可行性,表明在人类早期胚胎阶段进行致病性 mtDNA 突变校正的可能性。 理论上,DdCBE可以纠正mtDNA中的一系列致病性A ∙ T-to-G ∙ C突变,从而达到治疗效果。尽管在 3PN mtDNA 中检测到的脱靶编辑可能不足以产生表型,但当前的线粒体碱基编辑策略需要进一步优化以满足任何临床应用的需求。2020年7月8日,博德研究所David R. Liu及华盛顿大学医学院Joseph D. Mougous共同通讯在Nature 在线发表题为“A bacterial cytidine deaminase toxin enables CRISPR-free mitochondrial base editing”的研究论文,该研究描述了一种细菌间毒素,将其命名为DddA,它可以催化dsDNA中胞苷的脱氨。该研究设计了无毒且无活性的split-DddA半分子:DddA分割的一部分结构域(转录激活子样效应子阵列蛋白)和尿嘧啶糖基化酶抑制剂的融合,产生了无RNA的DddA衍生的胞嘧啶碱基编辑器(DdCBE),可催化人mtDNA中的C•G到T•A转化,具有高靶标特异性和产品纯度。该研究使用DdCBEs建模人类细胞中与疾病相关的mtDNA突变,从而导致呼吸速率和氧化磷酸化的改变。不含CRISPR的DdCBE可以精确操纵mtDNA,而不是消除因被靶向核酸酶切割而产生的mtDNA拷贝,这对线粒体疾病的研究和潜在治疗具有广泛的意义(点击阅读)。
微信加群
iNature汇集了4万名生命科学的研究人员及医生。我们组建了80个综合群(16个PI群及64个博士群),同时更具专业专门组建了相关专业群(植物,免疫,细胞,微生物,基因编辑,神经,化学,物理,心血管,肿瘤等群)。温馨提示:进群请备注一下(格式如学校+专业+姓名,如果是PI/教授,请注明是PI/教授,否则就直接默认为在读博士,谢谢)。可以先加小编微信号(iNature5),或者是长按二维码,添加小编,之后再进相关的群,非诚勿扰。
投稿、合作、转载授权事宜
请联系微信ID:13701829856 或邮箱:iNature2020@163.com
觉得本文好看,请点这里!